A Primal-dual Trust-region Algorithm for Minimizing a Non-convex Function Subject to General Inequality and Linear Equality Constraints a Primal-dual Trust-region Algorithm for Non-convex Constrained Minimization

نویسندگان

  • Andrew R. Conn
  • Nicholas I. M. Gould
  • Dominique Orban
  • Philippe L. Toint
چکیده

A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Preliminary numerical results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Primal - Dual Trust - Region Algorithm for Minimizing aNon - convex Function Subject to General Inequality and LinearEquality

A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Preliminary numerical results are presented.

متن کامل

A primal-dual trust-region algorithm for non-convex nonlinear programming

A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Numerical results are presented for general quadratic pr...

متن کامل

A Primal-dual Algorithm for Minimizing a Non-convex Function Subject to Bound and Linear Equality Constraints

A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to simple bounds and linear equality constraints. The method alternates between a classical primal-dual step and a Newton-like step in order to ensure descent on a suitable merit function. Convergence of a well-deened subsequence of iterates is proved from arbitrary starting points. Algorithmi...

متن کامل

Primal-Dual Relationship Between Levenberg-Marquardt and Central Trajectories for Linearly Constrained Convex Optimization

We consider the minimization of a convex function on a compact polyhedron defined by linear equality constraints and nonnegative variables. We define the Levenberg-Marquardt (L-M) and central trajectories starting at the analytic center and using the same parameter, and show that they satisfy a primal-dual relationship, being close to each other for large values of the parameter. Based on this ...

متن کامل

An Affine Scaling Trust Region Algorithm for Nonlinear Programming

A monotonic decrease minimization algorithm can be desirable for nonconvex minimization since there may be more than one local minimizers. A typical interior point algorithm for a convex programming problem does not yield monotonic improvement of the objective function value. In this paper, a monotonic affine scaling trust region algorithm is proposed for nonconvex programming. The proposed aff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999